Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Front Immunol ; 14: 1170012, 2023.
Article in English | MEDLINE | ID: covidwho-2296289

ABSTRACT

Clinical outcomes from infection with SARS-CoV-2, the cause of the COVID-19 pandemic, are remarkably variable ranging from asymptomatic infection to severe pneumonia and death. One of the key drivers of this variability is differing trajectories in the immune response to SARS-CoV-2 infection. Many studies have noted markedly elevated cytokine levels in severe COVID-19, although results vary by cohort, cytokine studied and sensitivity of assay used. We assessed the immune response in acute COVID-19 by measuring 20 inflammatory markers in 118 unvaccinated patients with acute COVID-19 (median age: 70, IQR: 58-79 years; 48.3% female) recruited during the first year of the pandemic and 44 SARS-CoV-2 naïve healthy controls. Acute COVID-19 was associated with marked elevations in nearly all pro-inflammatory markers, whilst eleven markers (namely IL-1ß, IL-2, IL-6, IL-10, IL-18, IL-23, IL-33, TNF-α, IP-10, G-CSF and YKL-40) were associated with disease severity. We observed significant correlations between nearly all markers elevated in those infected with SARS-CoV-2 consistent with widespread immune dysregulation. Principal component analysis highlighted a pro-inflammatory cytokine signature (with strongest contributions from IL-1ß, IL-2, IL-6, IL-10, IL-33, G-CSF, TNF-α and IP-10) which was independently associated with severe COVID-19 (aOR: 1.40, 1.11-1.76, p=0.005), invasive mechanical ventilation (aOR: 1.61, 1.19-2.20, p=0.001) and mortality (aOR 1.57, 1.06-2.32, p = 0.02). Our findings demonstrate elevated cytokines and widespread immune dysregulation in severe COVID-19, adding further evidence for the role of a pro-inflammatory cytokine signature in severe and critical COVID-19.


Subject(s)
COVID-19 , Humans , Female , Aged , Male , Cytokines , Interleukin-10 , Interleukin-33 , SARS-CoV-2 , Interleukin-6 , Tumor Necrosis Factor-alpha , Pandemics , Chemokine CXCL10 , Interleukin-2 , Granulocyte Colony-Stimulating Factor
2.
Front Immunol ; 13: 864387, 2022.
Article in English | MEDLINE | ID: covidwho-1903011

ABSTRACT

Unusually for a viral infection, the immunological phenotype of severe COVID-19 is characterised by a depleted lymphocyte and elevated neutrophil count, with the neutrophil-to-lymphocyte ratio correlating with disease severity. Neutrophils are the most abundant immune cell in the bloodstream and comprise different subpopulations with pleiotropic actions that are vital for host immunity. Unique neutrophil subpopulations vary in their capacity to mount antimicrobial responses, including NETosis (the generation of neutrophil extracellular traps), degranulation and de novo production of cytokines and chemokines. These processes play a role in antiviral immunity, but may also contribute to the local and systemic tissue damage seen in acute SARS-CoV-2 infection. Neutrophils also contribute to complications of COVID-19 such as thrombosis, acute respiratory distress syndrome and multisystem inflammatory disease in children. In this Progress review, we discuss the anti-viral and pathological roles of neutrophils in SARS-CoV-2 infection, and potential therapeutic strategies for COVID-19 that target neutrophil-mediated inflammatory responses.


Subject(s)
COVID-19 , Extracellular Traps , COVID-19/complications , Humans , Neutrophils , SARS-CoV-2 , Systemic Inflammatory Response Syndrome
4.
Arthritis Rheumatol ; 73(9): 1713-1719, 2021 09.
Article in English | MEDLINE | ID: covidwho-1326753

ABSTRACT

OBJECTIVE: COVID-19 is a novel infectious disease with a broad spectrum of clinical severity. Patients with systemic vasculitis have an increased risk of serious infections and may be at risk of severe outcomes following COVID-19. We undertook this study to establish the risk factors for severe COVID-19 outcomes in these patients, including the impact of immunosuppressive therapies. METHODS: A multicenter cohort was developed through the participation of centers affiliated with national UK and Ireland vasculitis registries. Clinical characteristics and outcomes are described. Logistic regression was used to evaluate associations between potential risk factors and a severe COVID-19 outcome, defined as a requirement for advanced oxygen therapy, a requirement for invasive ventilation, or death. RESULTS: The cohort included 65 patients with systemic vasculitis who developed COVID-19 (median age 70 years, 49% women), of whom 25 patients (38%) experienced a severe outcome. Most patients (55 of 65 [85%]) had antineutrophil cytoplasmic antibody-associated vasculitis (AAV). Almost all patients required hospitalization (59 of 65 [91%]), 7 patients (11%) were admitted to intensive care, and 18 patients (28%) died. Background glucocorticoid therapy was associated with severe outcomes (adjusted odds ratio [OR] 3.7 [95% confidence interval 1.1-14.9]; P = 0.047), as was comorbid respiratory disease (adjusted OR 7.5 [95% confidence interval 1.9-38.2]; P = 0.006). Vasculitis disease activity and nonglucocorticoid immunosuppressive therapy were not associated with severe outcomes. CONCLUSION: In patients with systemic vasculitis, glucocorticoid use at presentation and comorbid respiratory disease were associated with severe outcomes in COVID-19. These data can inform clinical decision-making relating to the risk of severe COVID-19 in this vulnerable patient group.


Subject(s)
COVID-19/mortality , COVID-19/therapy , Glucocorticoids/therapeutic use , Immunosuppressive Agents/therapeutic use , Oxygen Inhalation Therapy/statistics & numerical data , Respiration, Artificial/statistics & numerical data , Systemic Vasculitis/drug therapy , Aged , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/drug therapy , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/epidemiology , Comorbidity , Female , Hospitalization , Humans , Intensive Care Units , Male , Middle Aged , Odds Ratio , Registries , Respiratory Tract Diseases/epidemiology , Risk Factors , SARS-CoV-2 , Severity of Illness Index , Systemic Vasculitis/epidemiology
5.
Viruses ; 13(7)2021 07 15.
Article in English | MEDLINE | ID: covidwho-1314763

ABSTRACT

Serological assays have been widely employed during the coronavirus disease 2019 (COVID-19) pandemic to measure antibody responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and to track seroconversion in populations. However, currently available assays do not allow determination of neutralization capacity within the assay protocol. Furthermore, commercial serology assays have a high buy-in cost that is inaccessible for many research groups. We have replicated the serological enzyme-linked immunosorbent assay for the detection of SARS-CoV-2 antibody isotypes, developed at the Icahn School of Medicine at Mount Sinai, New York. Additionally, we have modified the protocol to include a neutralization assay with only a minor modification to this protocol. We used this assay to screen local COVID-19 patient sera (n = 91) and pre-COVID-19 control sera (n = 103), and obtained approximate parity with approved commercial anti-nucleoprotein-based assays with these sera. Furthermore, data from our neutralization assay closely aligns with that generated using a spike-based pseudovirus infection model when a subset of patient sera was analyzed.


Subject(s)
Angiotensin-Converting Enzyme 2/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Viral/blood , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Serological Testing , Enzyme-Linked Immunosorbent Assay , HEK293 Cells , Humans , Pandemics , SARS-CoV-2/isolation & purification , Seroconversion
SELECTION OF CITATIONS
SEARCH DETAIL